20	HIL
13/	
11	

INDIAN RUBBER INSTITUTE

DIRI EXAMINATION - 2016

Paper - I

Date: 22.07.2016 Duration: 3 Hours

Polimer Science

Time: 10.00-13.00 hrs. Full Marks : 100

Answers should be illustrated with sketches wherever helpful

Total FIVE questions are to be answered. From "Group-A" answer FOUR questions out of which Question No. 1 is Compulsory and From "Group-B" answer ONE question only.

<u>GROUP – A</u>

1. Multiple choice questions: Select the correct answer from the given alternatives:

(i) NBR is a

(a) Homopolymer (b) Crystalline Polymer

(c) Heteropolymer (d) Copolymer

(ii) Condensation polymerization takes place between monomers such as

- (a) Monohydric alcohol and mono-carboxylic acid
- (b) Monohydric alcohol and di-carboxylic acid
- (c) Dyhydric alcohol and mono carboxylic acid
- (d) Dihydric alcohol and di-carboxylic acid

(iii) Polymer with higher elongation at break arises from

- (a) Highly branched structure
- (b) Cis configuration
- (c) Trans configuration
- (d) Highly crystalline structure
- (iv) T, of a polymer is determined by
 - (a) Viscometer (b) Dilatometer
 - (c) Osmometer (d) Rheometer
- (v) Polyethylene has molecular weight of 28,000. It has degree of polymerization
 (a) 280
 (b) 2800
 (c) 1000
 (d) 2000
- (vi) EPDM is a
 - (a) Homopolymer(b) Copolymer(c) Terpolymer(d) Fibre

Dec.

(vii) Example of self-reinforcing rubber is (a) NR (b) BR (c) SBR (d) EPDM

[Turn Over]

	1	-	
			Y

(2)

• .:

(viii)) Dicumyl peroxide is an example of
	(a) Plasticizer (b) Crosslinking agent (c) Initiator (d) Peptizer
(ix)	Which one is a natural polymer
	(a) Silk (b) Rayon
	(c) Polyester (d) Nylon
(x)	Nylon is a
	(a) Polyester (b) Polyamide
	(c) Polyolefin (d) None of the above
())	
(X1)	(a) SPP (b) PCP (c) Nitrile rubber
	(a) SBR (b) PCP (c) Mulle Tubber (d) Butyr Tubber
(xii)	Glass transition temperature of NR is
	(a) 30° C (b) 0° C (c) -30° C (d) -74° C
(xiii)	A polymer which has oxygen atom in the main chain is
	(a) SBR (b) NBR (c) PMMA (d) MQ
(XIV)	Most important criteria of a polymer to form strong fibre is
	a) Partially crystalline b) Amorphous
	c) righty crystalline d) righty atactic
(xv)	Number-average molecular weight of a polymer can be determined by
	a) Osmometry b) Light scattering
	c) Viscometry d) Dilatometry
(
(XVI)	Polymers show rubbery properties
	(a) Above I _g (b) Below Ig (c) Both below and above T (d) None of the above
	(c) Both below and above r_g (d) None of the above
(xvii)	4 Grades of Polystyrene having Mw of
	a) 1,04,000 b) 2,08,000 c) 4,16,000 d) 8,32,000 respectively. Which one will have the lowest
	MFI?
(xviii)	SBR is a
	(a) Homopolymer (b) Alternating copolymer
	(c) Random Copolymer (d) Block copolymer
(xix)	Phenol formaldehyde resin is an example of
	(a) Natural polymer (b) Semi-synthetic polymer
	(c) Thermoplastic polymer (d) Thermosetting polymerization

4			1 3			···· -	
3/			(- ⁻				
()	c) Hydroquinone is	an example of					
1	(a) Initiator	(b) Inhibit	or (c) Er	nulsifier	(d) Hardene	er	
						$(1 \ge 20) = 20$	1
2.(a)	What are 'mono	mer' and 'polym	er'? Explain them	with an exa	mple in each cas	se.	
(b)	Give two examp	oles of natural po	lymer and two exa	mples of synt	thetic polymer.		
(c)	What should be	the minimum fur	nctionality of a mon	omer? Give	an example.		
(d)	What is the func	tionality of vinyl	chloride ($CH_2 = C$	H- Cl) in pol	ymerization react	tion.	
(e)	Write down the	stress-strain curv	es in the same plot	for the follow	wing:		
	i) a rubber	ii) a rigid plas	tic iii) a f	iber			
						6+4+3+3+4= 20)
3.	Distinguish betwe	een the following	s with suitable exan	nples:			
(a)	Addition and Co	ndensation polyn	nerization				
(b)	Thermoplastics a	nd Thermosets					
(c)	Random and Alte	emating Copolyn	ler				
(d)	Isotactic and Syn	diotactic Polyme	r				
(e)	Bulk and Solution	n polymerization					
• ×						$(5 \times 4) = 20$	
4. (a)	Distinguish betwee	en homopolyme	, copolymer and te	rpolymer with	h suitable examp	les.	
(b)	Explain with exa	mples the differe	nce between natura	and syntheti	ic rubber.		
(c)	What are differen	t techniques of t	olymerization discu	uss their relat	ive advantages a	nd disadvantages.	
		1 1			0	(6+4+10) = 20	
			GROUP -	В		(0,0,1,0) 10	
5. (a)	Why do polymer	s show average	molecular weight	in contrast	to definite mol	ecular weight of simple	
	chemical compour	nds?					
(b)	What is meant by	polydispersity?					
(c)	What is the impo	rtance of polydis	persity in rubber te	chnology?			
(d)	Calculate \overline{M} and	\overline{M} for a po	lydispersed polyn	ner composed	I of the followin	g mixture of fractions	
	(mass % and mol	ecular weight of	each of the fraction	is are given):		0	
		9		0 /			
	Mass %	20	30	5	0		
	Mol. Weight	50,000	1,00,000	2,00	,000		
	0		3 6			(4+4+4+8) = 20	
6.	Name the polyme	rs used in each o	ase with the struct	ure of the co	rresponding mor	nomer and polymer.	

6. Name the polymers used in each case with the structure of the corresponding model.(a) A rubber which exhibits very good low temperature flexibility.

(b) A rubber which exhibits excellent weather resistant property.

(c) A heat resistant rubber.

(d) A rubber which shows strains induced crystallization.

(e) A polar rubber.

 $(1+3) \ge 5 = 20$

[Turn Over]

-- - - -- -

(4)

- Explain the following statement. If any of the statement is incorrect, please correct this with proper explanation.
 - (a) Trans-BR is more rubbery than Cis-BR.
 - (b) The properties of NBR depend on the acrylonitrile (ACN) content.
 - (c) Polychloroprene rubber (CR) has more heat and oil resistant properties than fluoro elastomer.
 - (d) As the styrene content increases, the rubbery properties of SBR gets improved.
 - (e) NR is more prone to undergo strain induced crystallization than NBR.
 - (f) Syndiotactic polystyrene is more crystalline than atactic polystyrene.
 - (g) Polypropylene has higher Tg than polyethylene.
- (h) Butyl rubber is usually prepared by using redox initiators.
- (i) Anionic polymerization is called stereo-regular polymerization.
- (j) Carothers's equation is usually used for the polymerization of vinyl monomer.
- 8. Write short notes on any four of the following
 - (a) Carothers's equation
 - (b) Stereoregular polymerization
 - (c) Glass transition temperature and its significance
 - (d) Block copolymer
 - (e) Viscoelasticity
 - (f) Ring opening polymerization

(10 x2) = 20

 $(4 \ge 5) = 20$

