INDIAN RUBBER INSTITUTE PGD-IRI EXAMINATION - 2015

Paper - I

Date: 17th July, 2015

Time: 10.00-13.00 hrs. Full Marks : 100

[Turn Over]

i + 5) = Duration: 3 Hours **Polymer Science** Answers should be illustrated with sketches wherever helpful Total FIVE questions are to be answered. Question No. 1 is compulsory and x 5) = answer FOUR from the remaining questions taking TWO from each group. **GROUP - A** L Multiple choice questions: select the correct answer from the given alternatives: A polymer which has a hetero atom in the main chain backbone 1) (b) NBR (c) PVC (a) CR (d) Thiokol Usually polybutadiene is commercially prepared by (1) (a) Condensation polymerization (b) Ziegler-Natta polymerization (c) Ring opening polymerization (d) Cationic polymerization Anionic polymerization can be initiated by (m) (a) Azo bis isobutyro nitrile (AIBN) (b) Butyl lithium (c) Dicumyl peroxide (d) BF, and the set of a set of the set of the set of a set of the set of (iv) In emulsion polymerization, the initiators used should be (a) Water soluble (b) Monomer soluble (c) Both monomer in soluble or water in soluble (d) None of these (v) The catalyst used for cationic polymerization is (b) BPO (a) AlCl, (c) TiCL/TEAL (d) Redox initiator (VI) Which polymerization process gives a latex? (a) Bulk polymerization (b) Solution polymerization (c) Suspension polymerization (d) Emulsion polymerization (Vii) Molecular weight distribution is: (a) $\overline{M_n} / \overline{M_w}$ (b) $\overline{M_w} / \overline{n}$ (c) $\overline{M_n} / \overline{N}$ (d) $\overline{M_w} / \overline{M_n}$ (vin)

The following is not an example of ring opening polymerization:

(a) Nylon 6 (b) Nylon 66 (c) Poly alkenamer (d) Poly epichlorohydrin

	2	
	(2)	1
(ix)	GPC gives	2.
	(a) Number average molecular weight(b) Molecular weight distribution(c) Weight average molecular weight(d) All of these	×
(x)	Glass transition temperature of a polymer is determined by	
	(a) Infrared spectrophotometer (b) Differential scanning calorimeter	
	(c) X-ray diffraction (XRD) (d) Scanning electron microscopy	3.(a) i)
(xi)	If polystyrene has a molecular weight (M _p) of 52,000 what is its degree of polymerization?	ii)
	(a) 100 (b) 500 (c) 10000 (d) None of the these	iii) iv)
(xii)	Atactic polymers are	
	(a) Crystalline (b) Semi-crystalline (c) Amorphous (d) None of these	b)
(xiii)	SBS is a	1
	(a) Random copolymer (b) Alternate copolymer (c) Block copolymer (d) Statistical copolymer	
(min)		4.
(xiv)	Aramids are high performance (a) Polyesters (b) Polyethers (c) Polyimides (d) Polyamides	a)
(xv)	A rubber having good biocompatibility is	b) c)
(~)	(a) NR (b) SBR (c) NBR (d) PDMS	d)
(xvi)	A rubber prepared by condensation polymerization is	e) f)
()	(a) SBR (b) NBR (c) Thiokol (d) Polychloroprene rubber	g)
(xvii)	Gutta percha is	h) i)
	a) Cis 1,4 polyisoprene (b) Trans 1,4 polyisoprene	j)
	(c) 1,2 polyisoprene (d) 3, 4 polyisoprene	diam'r.
(XVIII)	Mercaptans are generally used in polymerizations as	5. (a)
	(a) Initiator (b) Chain transfer agent (c) Short stop (d) Emulsifier	ii) iii
(wiv)	Constallinity in a national land	iv
(xix)	(a) SEM (b) XRD (c) GPC (d) Viscometry	b) i)
(22)	Which rubbar has bich Indian and	ii)
(xx)	(a) BR (b) IIR (c) EPDM (d) Thiokol	
	(1x20) = 20	6.a) i
	[Turn Over]	

								3	
-					(3)				
	2. Write the full name of the following abbreviations and briefly explain their importance in								
	polymer science with proper example: (any ten)								
		i) Q	ii) DMA	iii) NMR	iv) IR		v) MBTS		
		vi) XRD	vii) KPS	viii) SEM	ix) IIR		x) ECO		
		xi) CTA	xii) SEC	xiii) M- H. C	onstant				
								$(10 \times 2) =$	
	3.(a) i	3.(a) i) Taking benzoyl peroxide (BPO) as an initiator show the different steps in the polymerization of styrene at 60°C. Write down the final rate equation of this polymerization reaction.							
				-					
	II)	1.1.1 P					hat will happen?		
		-	ppen if the temp				in the polymeriza	tion mection?	
	N)	what will lie	ippen n you me	rease the conce.	au au on v	U DI U I	an ale polymenza	(4 + 2 + 2 + 2) =	= 10
	b)	Write down t	he raw material	s, method of p	reparatio	on and cl	nemical structure	of the following poly	
		(any five)	_	-, F					
		i) EPDM	ii) Nylon 6, 1	0 iii) Cis	s- BR	iv) Syne	diotactic PP		
		v) CPE	vi) PTFE	vii) SH	BS				
								(5 x 2) =	- 10
	4.		ollowing statem	nent. If any of	the stat	tement is	incorrect, pleas	e correct this with pro	oper
		explanation.							
	a)		nore rubbery that				· · ·		
		b) The properties of NBR depend on the acrylonitrile (ACN) content.							
		c) Polychloroprene rubber (CR) has more heat and oil resistant properties than fluoro elastomer.							
	(b								
	e) f)								
	g)								
	h)		s usually prepar			itors.			
	i)		nerization is call						
	j)	Carothers's eq	uation is usually	used for the p	olymeriz	ation of	vinyl monomer.		
					1 14	-		$(10^{x} 2) =$	20
				G	roup - H	B			
	5. (a) i) What are the	different factors	which contribu	ute to cry	ystallinity	in a polymer?		
	1		different crystal						
	1.							lymer can be determin	ned.
_	IV)	Among polybi	utadiene and HE	OPE which one	will be e	easily sol	uble in toluene?		10
	b) i)	Eurolain with	abarratia firma	a subat ana tha .	L'Comment	5	tentinites mensilele	4 + 3 + 3 + 2 =	: 12
	ii)						tacticity possible	- 101 JE1	d by
14	- 4)		specific Ziglar-N					ut polystyrene prepared	I Uy
物た事		Some Store	spoonto zagiai-r	and catalyst 15	LISUIDON		uno. wity:	5 + 3	= 8
) = 20	6.a) i)	Write down th	e stress-strain ple	ot of NR, Nylo	n 6 (a fit	bre) and a	Steel in the same	plot. Explain the diffe	
and and a	12811	regions in eacl	h plot.						
n Over]								[Turn C	wer]

	1	
4	(4)	
ii)	What is Hook's law? Show the validity of this law in each of the above plots with proper explanation $6 + (2 + 4) = 1$	-4
b) i)	What are the different criteria that a polymer should fulfill to be called as rubber? Explain this with specific examples.	
ii)	Polyethylene has very low Tg, but it's not a rubber. Why? $5 + 3 = 8$	Dat(Dur
7.	Discuss the differences between the following terms with examples:	
(a)	Maxwell model and Voigt model.	
(b)	Newtonian fluid and non-Newtonian fluid.	
(c)	Stress relaxation and creep	
(d)	Hook's law and Power law	Ta
(e)	Atactic polymer & syndiotactic polymer.	То
	$(5 \times 4) = 20$	
8.	Write short notes on any four of the following	
(a)	Solution SBR	
(b)	Solubility parameter	
(c)	Poisson's ratio	
(d)	Dilatometry	1.
(e)	WLF Equation	(i
(f)	Strain induced crystallization	
	$(4 \times 5) = 20$	

(ii

(i

(

17