INDIAN RUBBER INSTITUTE

HK

	PGD-IRI EXAMINATION - 2016								
-		Paper - I							
Date:	: 22.07.2016			Tim					
Dura	tion: 3 Hours			Full					
		Poly	Polymer Science						
	Answers should be illustrated with sketches wherever helpful Total FIVE questions are to be answered. From Question No. 1 is compulsory Answer FOUR from the remaining questions taking TWO from each group.								
		<u>DUP – A</u>							
1. 🔊 (i)	Choose the correct answer from Name a rubber which is prepare (a) SBR (b) IIR (1 the given a ed by cationi c) NBR	ilternatives : ic polymerization (d) PVC						
(ii)	EPDM is commercially prepar	ed by	i ale Nata a la suizztion						
	(a) Radical polymerization	(d) (d)	niegier-Natia polymerization						
	(c) Cationic polymenzation	(u) Ai	monic polymenzation						
(iii)	Crystallinity of a polymer is qu	antitatively d	ietermined by						
	(a) XRD (b) TGA (c) Dilatomet	ry (d) Ostwald's viscometer						
(iv)	If BR has molecular weight $(\overline{N}$	(\bar{A}_n) of 54,00	00 what is its degree of polyr	nerization ?					
	(a) 999 (b) 1000 (c) 10,000	(d) Difficult to calc	ulate					
(v)	Name a polymer which has su	Iphur (S) in	the backbone						
	(a) SBR (b) IIR (d	c) MQ	(d) Thiokol - T						
(vi)	Name an initiator which is used	l in anionic r	polymerization						
	(a) AlCl ₃ (b) AIBN (a	c) BuLi	(d) Potassium persulfate						
(vii)	The Carother's equation involve	s							
	(a) $1 - 1/p$ (b) $1 + 1/p$ (c)	c) 1 / (1 – F	b) (d) 1 / (p − 1)						
(viii)	Living polymers are formed by								
	(a) Anionic polymerization	(b) Ca	ationic polymerization						
	(c) Coordination polymerization	(d) No	one of the above						
(ix)	Chain carrires in case of cationic	o polymeriza	tion are						
	(a) Carbanions	(b) Ca	arbonium ions						
	(c) Hydroxy ions	(d) No	one of the above						

Time: 10.00-13.00 hrs. Full Marks : 100

[Turn Over]

(2)

								-	5
	(x)	DOP is the most suitable plasticizer for							
	2.4	(a) NR	(b) IIR	(c) NBR		(d) SBR			- ^ `\
	(xi)	Cellulose is							
		(a) Synthetic polymer		(b) Re-gen	(b) Re-generated polymer				
		(c) Natural polymer		(d) Not at	all a	polymer			
	(1)	The total area	under the st	nan atmin a		in colled			
	(xu)	(a) Modulus		(b) Tourbr	HVC I	is called			
		(a) Modulus (c) Resilience		(d) LITS	1000				
		(c) residence		(4) 010					
	(xiii)	Solubility of a	polymer in a	a solvent occur	s wh	en			
		(a) the solubil	ity parameter	s of the two cl	osely	match			
		(b) the molecu	ular weights c	of the two close	ely m	natch			
		(c) they differ	widely in the	ir cohesive ene	ergy o	densities			0
		(d) the solvation	on process is	exothermic					
š	(xiv)	The crosslink	density of cu	red rubber san	iple i	is determined by			
		(a) Infrared sp	bectroscopy	(0) (b)	MITA	-violet spectroscopy			
		(c) Sweining II	hemod	(u)	INIVI	K specifoscopy			
	(xv)	When the gla	ss transition	temperature (7) of	f a polymer is well b	elow the ambient temp	erature, it is	
		called a			g			CHARGE PAR & AN	
		(a) Plastic	(b) Fibre	(c) Rubber	. ((d) Dendrimer			
	(xvi)	EVA is a							
		(a) Homopoly	mer (b) Co	polymer (c)	Тегр	olymer (d) Non poly	meric material		-
	(anii)	Which of the	following is a	househad abai	n nol	umar 2			
	(XVII)	(a) HDPE	(b) Isotactic	polypronylene	וסק וו ((d) Star	rch		
		(4) 1101 0	(0) 150110110	polypropytene	(
()	xviii)	The diene mor	nomer which	is used in EPD	Мп	ubber during polymeriz	ration		
		(a) Dichlrope	entadiene	(b) ENB					
		(c) Trans 1,4	-Hexadiene	(d) All th	ne ab	oove			
((xix)	The most pure	form of poly	mer is obtaine	d fro	m			
		(a) Bulk	(b) S	olution		Mars and success			
		(c) Suspension	(a) E	musion polyn	leriza	uon process			
((xx)	The polymeric	component ir	n ball pen ink i	s ger	nerally			
		(a) Cellulose a	cetate	(b) Cellulos	e nitr	rate			
		(c) Cellulose b	utyrate	(d) Cellulos	se ac	etate - butyrate	(1 x	20) = 20	

(3)

- 2. Explain briefly why ?
- i) Tg of PMMA (polymethyl methacrylate) is 100°C, but Tg of polymethyl acrylate is +10° C.
- ii) Polyacrylonitrile (PAN) is a plastic, but NBR is a rubber.
- iii) Air permeability in IIR is very poor, but in silicone rubber it is very high.
- iv) SBR is a rubber, but SBS is a thermoplastic elastomer.
- v) PVC is plastic, but PVC with DOP is rubber-like material.
- vi) An unfilled natural rubber vulcanizate has a much higher value of tensile strength than a similar vulcanizate prepared from synthetic rubber.
- vii) Low temperature flexibility of silicone rubber is much better than acrylonitrile butadiene rubber.
- viii) Polychloroprene shows much better flame resistance property than natural rubber.

 $(2.5 \times 8) = 20$

- 3. a) What is understood by molecular weight of polymers and why is it necessary to express it in terms of an average ?
- b) Give the general expressions of any two different types of average molecular weights known to you.
- c) A polymer sample contains mixture of molecules of the same chemical type: fraction A with 540 molecules having molecular weight 1000 each and fraction B with 360 molecules having molecular weight 9000 each. Calculate the number and weight average molecular weight of the polymer sample.
- d) How does molecular weight affect the processing properties and vulcanizate properties of polymers ?

(4+4+8+4) = 20

- 4. a) Explain the terms : Elastic, Viscous and Viscoelastic.
 - b) How do the elastic and viscous components of an elastomer and a plastomer differ ?
 - c) What do you mean by the term Resilience? How is it related do Hysteresis ?
 - d) How does the impact strength and toughness of a polymeric material differ ? Explain why they are so called?

 $(4 \times 5) = 20$

Group - B

5. a) Draw a stress – strain curve of a typical polymer and indicate the following :
i) Yield point ii) Hookian zone iii) Necking iv) Breaking point

- b) Differentiate between the following pair of terms giving suitable example in each case :
 - i) Inhibitor and short stop ii) Creep and stress relaxation

iii) Alternating and block copolymer iv) Isotactic and syndiotactic polypropylene

(4 x 2 + 4 x 3) = 20

- 6. a) Explain the role of emulsifier in a typical emulsion polymerization system.
 - b) Write down the advantages of using an emulsion polymerization system.
 - c) Why short stop is added in the manufacture of SBR by emulsion method ?
 - d) What are the advantages of using redox initiator over conventional free radical initiator ?
 - e) What type of catalyst is used in making solution SBR ?

(6+6+3+3+2) = 20[Turn Over]

- 7. a) What is meant by tacticity in polymers? Explain, with suitable example, the terms : isotactic, syndiotactic and atactic polymer.
 - b) What is a co-ordination catalyst? Name any two co-ordination catalysts commonly used.
 - c) Why stereo-regular polymers are so important?
- 8. Write short notes on Any Four of the following :-
- a) Cis and trans polymers
- b) Dilatometer
- c) Strain induced crystallization
- d) Newtonian and Non-Newtonian fluid
- e) Step growth polymerization

 $(4 \times 5) = 20$

(9+6+5) = 20